t^2-4t=-1

Simple and best practice solution for t^2-4t=-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-4t=-1 equation:



t^2-4t=-1
We move all terms to the left:
t^2-4t-(-1)=0
We add all the numbers together, and all the variables
t^2-4t+1=0
a = 1; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3}}{2*1}=\frac{4-2\sqrt{3}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3}}{2*1}=\frac{4+2\sqrt{3}}{2} $

See similar equations:

| 3a-6/4=5a+3/2 | | 6x(2x-3)=4x(3x-4)-4 | | X-4=2.5(x+3.5) | | -x-66=34-6x | | w=28-3w | | 6a+2=-3a+5 | | 3x+2x+x+1=180 | | -1/3b=-15 | | 42=3x-13 | | 6+8v=10v | | -10-6x=-104 | | 3x/5-2=×+1/3 | | -2+k=16 | | 9x2-3/4x=0 | | 8x-90=14x+30 | | x+(2x-10)+(3x-50)=180 | | $2.49+$1.24p=$11.17 | | 14-(-2)=x | | -4=-1(3)+b | | -4=-1+b | | 3/9=4/d | | ?x5=75 | | 75-(-50)=x | | -7x-60=36-11x | | 10x+44)=(8x-23) | | -18-(-7)=x | | 5+2t-4=9t+19-4t | | 3x-17=28-2x | | 19+(-6)=x | | -8p+7-2p-6=-19 | | x2+6x=-3x+-162=0 | | x-0.0025=0.0024 |

Equations solver categories